from relax.data import load_data
from relax.module import PredictiveTrainingModule, PredictiveTrainingModuleConfigs, load_pred_model
from relax.evaluate import generate_cf_explanations, benchmark_cfs
from relax.trainer import train_modelDiverse CF
DIVERSECFCONFIG
CLASS relax.methods.diverse.DiverseCFConfig (n_cfs=5, n_steps=1000, lr=0.01, lambda_=0.01, seed=42)
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
DIVERSECF
CLASS relax.methods.diverse.DiverseCF (configs=None)
Base CF Explanation Module.
Load data:
dm = load_data('adult', data_configs=dict(sample_frac=0.1))/home/birk/miniconda3/envs/nbdev2/lib/python3.8/site-packages/sklearn/preprocessing/_encoders.py:868: FutureWarning: `sparse` was renamed to `sparse_output` in version 1.2 and will be removed in 1.4. `sparse_output` is ignored unless you leave `sparse` to its default value.
warnings.warn(
Train predictive model:
# load model
params, training_module = load_pred_model('adult')
# predict function
pred_fn = training_module.pred_fnDefine DiverseCF:
diversecf = DiverseCF()Generate explanations:
cf_exp = generate_cf_explanations(
diversecf, dm, pred_fn=pred_fn,
pred_fn_args=dict(
params=params, rng_key=random.PRNGKey(0)
)
)Evaluate explanations:
benchmark_cfs([cf_exp])| acc | validity | proximity | ||
|---|---|---|---|---|
| adult | DiverseCF | 0.8241 | 0.393932 | 1.913267 |