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Counterfactual Explanation (Recourse)

Feature Value
Age 24
Amount $20,000
Duration 36
FICO 600
Income 2,500

Value
24
$16,000 (– $4,000)
36
650 (+ 50)
2,500

2

Loan 
Denied

Loan 
Approved

Co
un

te
rf

ac
tu

al
 

Ex
pl

an
at

io
n



Counterfactual Explanation (Recourse)
Criteria of a good counterfactual explanation
• A valid counterfactual

𝑓𝑓 𝑥𝑥′ = 𝑦𝑦target

• Minimal cost of changes
min 𝑐𝑐(𝑥𝑥, 𝑥𝑥′)

Balancing the cost-invalidity trade-off is important.
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Cost-Invalidity Trade-Off

𝑓𝑓(⋅)𝑥𝑥′

Low Cost
Invalid CF

Medium Cost
Valid CF High Cost

Valid CF

𝑥𝑥
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Existing Methods
Non-parametric Post-hoc Methods:

min
𝒙𝒙′

ℒ 𝑓𝑓 𝑥𝑥cf ,𝑦𝑦target

𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯

+ 𝜆𝜆 ⋅ 𝑐𝑐(𝑥𝑥, 𝑥𝑥′)
cost of changes

Parametric Post-hoc Methods:

min
𝜽𝜽𝒈𝒈

ℒ 𝑓𝑓 𝑥𝑥′ ,𝑦𝑦target
𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯

+ 𝜆𝜆 ⋅ 𝑐𝑐(𝑥𝑥, 𝑥𝑥′)
cost of changes

where 𝑥𝑥′ = 𝑔𝑔𝜃𝜃𝑔𝑔(𝑥𝑥)
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Existing Methods
Non-parametric Post-hoc Methods:

min
𝒙𝒙𝐜𝐜𝐜𝐜

ℒ 𝑓𝑓 𝑥𝑥cf ,𝑦𝑦target

𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯

+ 𝜆𝜆 ⋅ 𝑐𝑐(𝑥𝑥, 𝑥𝑥cf)
cost of changes

Parametric Post-hoc Methods:

min
𝜽𝜽𝒈𝒈

ℒ 𝑓𝑓 𝑥𝑥cf ,𝑦𝑦target

𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯

+ 𝜆𝜆 ⋅ 𝑐𝑐(𝑥𝑥, 𝑥𝑥cf)
cost of changes

where 𝑥𝑥cf = 𝑔𝑔𝜃𝜃𝑔𝑔(𝑥𝑥)
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𝑓𝑓(⋅)𝑥𝑥′

𝑥𝑥

𝑔𝑔(⋅)

Existing methods are post-hoc 
(explain after predict).



Existing Methods are Post-Hoc
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Dataset Predictor CF 
Explainer

Training Explaining

Assuming black-box models
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EU-GDPR enforces the 
“Right to Explanation”

ML developers want to provide explanations along with predictions.



Existing Methods are Post-Hoc

9

Dataset Predictor CF 
Explainer

Training Explaining

Assuming black-box models
becomes overly limiting
• Does not properly balance the 

cost-invalidity trade-off.
• Runs prohibitively slow.
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Dataset Predictor CF 
Explainer

Training Explaining

Existing Methods are Post-Hoc

Our End-to-End Approach: CounterNet

Dataset
Predictor

CF 
Explainer

Training & 
Explaining



Architecture

11



Objective Function
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ℒ1 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑥𝑥𝑖𝑖

2

 Prediction Loss

ℒ2 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 �𝑦𝑦𝑥𝑥𝑖𝑖 − (1 − �𝑦𝑦𝑥𝑥𝑖𝑖′)

2

 Validity Loss

ℒ3 = 1
𝑛𝑛
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′ 2

 Change of Cost Loss

arg min
𝜃𝜃
𝜆𝜆1 ⋅ ℒ1 + 𝜆𝜆2 ⋅ ℒ2 + 𝜆𝜆3 ⋅ ℒ3 🚨🚨 Two Issues in Training 



Issue ONE: Poor Convergence

∇𝜃𝜃ℒ1

∇𝜃𝜃ℒ2

∇𝜃𝜃ℒ

𝜃𝜃

• Divergent gradient of ∇𝜃𝜃ℒ1 and 
∇𝜃𝜃ℒ2 leads to training instability.
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Issue TWO: Adversarial Robustness
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• Optimizing validity loss ℒ2 w.r.t.
predictors 𝜃𝜃𝑓𝑓 leads to decreased 
adversarial robustness



Block-Wise Gradient Descent
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For each batch of 𝑚𝑚 data points 𝑥𝑥 𝑖𝑖 ,𝑦𝑦 𝑖𝑖 𝑚𝑚
,

① 𝜃𝜃(1) = 𝜃𝜃(0) − ∇𝜃𝜃(0)(𝜆𝜆1 ⋅ ℒ1)

② 𝜃𝜃𝑔𝑔
(2) = 𝜃𝜃𝑔𝑔

(1) − ∇𝜃𝜃𝑔𝑔(1)(𝜆𝜆2 ⋅ ℒ2 + 𝜆𝜆3 ⋅ ℒ3)

🔨🔨 Issue One

• Distribute to two stages

🔨🔨 Issue Two

• Only optimizing 𝜃𝜃𝑔𝑔 at Stage ②



CounterNet is best-performing method
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主持人笔记
演示文稿备注
pentagram



CounterNet is best-performing method
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主持人笔记
演示文稿备注
pentagram



CounterNet runs faster than other baselines
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主持人笔记
演示文稿备注
pentagram



CounterNet matches predictive accuracy
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主持人笔记
演示文稿备注
pentagram
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CounterNet does not suffer from increased
adversarial vulnerability



Key Insights

21

• Post-hoc explainability can be sub-optimal and overly 
limiting in counterfactual explanations.

• CounterNet represents a first step towards developing 
end-to-end counterfactual explanation system

• Distribution shift, diversity, causality, other data modality...

主持人笔记
演示文稿备注
pentagram
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GitHub: https://github.com/BirkhoffG/ReLax

Check out ReLax, 
our new open-source recourse 
explanation library at GitHub.

https://github.com/BirkhoffG/ReLax


Thank you!
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GitHub: https://github.com/BirkhoffG/counternet

https://github.com/BirkhoffG/counternet
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